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Abstract: The effects of exogenous abscisic acid (ABA) and naphthylacetic acid (NAA) on 
phenolic characteristics of grapes and wines were investigated in Cabernet Sauvignon (Vitis 
Vinifera L.). Exogenous ABA treatment before veraison significantly improved berry and wine 
attributes. ABA accelerated the accumulation of anthocyanins in grape skins but cannot increase the 
total anthocyanin content. And NAA significantly inhibited the accumulation of anthocyanins. The 
wines made from ABA and NAA treated grapes were detected 19 individual anthocyanins. The 
proportions of acylated anthocyanins and derived pigments in the wines were decreased to some 
degree by exogenous ABA treatment. And NAA had the opposite effect. Wines with high acylated 
anthocyanins were more stable in color. These findings provide insight into the effect of ABA and 
NAA spray on grape and wine anthocyanins, and the stable color of wine.  

1. Introduction 
Phenolic compounds have important effect on grape and wine quality due to their key roles in wine 

color and mouth feel properties, as well as its aging potential and stability. The main classes of 
phenolic compounds in grape and wines include phenolic acids, stilbenes, and flavonoids (i.e. 
anthocyanins, flavonols, flavan-3-ol monomers, and proanthocyanidins). These compounds can be 
extracted into wines during maceration and fermentation. 

Anthocyanins are an important secondary metabolite and provide color and antioxidant activity to 
grape berries and wines [1]. The type, content and proportion of anthocyanins determine the color of 
grape skin and the color characteristics and aging potential of wine [2-5]. Flavonoids and phenolic 
acids, known as polyphenols, act as co-pigments to stabilize the color [6]. Anthocyanin sugar 
molecules can acylate organic acid molecular groups, usually at the C6 position of glucose, and a few 
also acylate at the C2, C3, and C4 hydroxyl positions to form different acylated monomers [7, 8]. The 
most common in wine grapes are acetylated, coumalylated, and coffee acylated groups [9]. Some 
studies have shown that acylated anthocyanins have significant advantages in terms of stability and 
antioxidant function [10, 11]. 

The accumulation of anthocyanins starts at the time of veraison, which is the onset of berry 
ripening [12]. Veraison of grapes can be identified from an increase in soluble solids content, berry 
softening, and a sudden increase in the skin color [13]. The biosynthesis and accumulation of 
anthocyanins are affected by many factors, such as grape variety, grape ripeness, environmental 
factors, viticulture practices and vinification processes, which can qualitatively and quantitatively 
affect the phenolic composition of the grape and wine and, therefore, their nutritional and quality 
properties [14]. 

Various physiological changes involved in the ripening of grape berries are regulated by complex 
signals of plant hormones, including ethylene, abscisic acid (ABA), brassinosteroids, 
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brassinosteroids, jasmonates, polyamines, cytokinins, and auxins (IAA, IBA, naphthaleneacetic acid 
(NAA), etc.) [15, 16]. Several studies have demonstrated the multiple applications of exogenous 
abscisic acid can increase phenolic contents, mainly anthocyanins and flavonols, and 
antioxidantproperties of the grape skins [17-21]. The wines made from ABA-treated grapes were also 
enhanced in total phenolics, anthocyanins, flavonols and antioxidant activities [21]. However, the 
application time and concentration of ABA are critically important for the effective improvement of 
color development in grape skin [22-24]; this may vary depending on the cultivar and area of 
application. 

Merlot berries treated with naphthylacetic acid (NAA) at pre-veraison showed strongly delay in 
ripening inception, suppressed accumulation of anthocyanins of berries with down-regulation of 
genes involved in flavonoid biosynthesis and cell expansion [25]. It is reported NAA application 
affects the natural decline of IAA in advanced berries and delays the ripening, thereby reducing 
variance between under-ripe and riper berries of the same cluster [26]. 

There are many studies on the effects of ABA, GA3, IAA on anthocyanins of grape berries. 
However, the effects of ABA and NAA on the the types of anthocyanins in wine and wine color has 
not been studied. Therefore, in this experiment, the effects of exogenous plant growth regulators on 
the total anthocyanins in grapes and the color oxidation of wines were studied by externally applying 
ABA and NAA.  

2. Materials and methods 
2.1 Reagents and Standards 

All solvents were of HPLC quality and all chemicals were of analytical grade (>99%). 
Commercial standards of Delphinidin-3-O-glucoside, Petunidin-3-O-glucoside, 
Malvidin-3-O-glucoside were purchased from Sigma–Aldrich (Missouri, USA). Sodium hydroxide 
(NaOH), phenolphthalein, Folin–Ciocalteu, sodium carbonate (Na2CO3), sodium nitrite (NaNO2), 
aluminum nitrate (Al(NO3)3), acetone, formic acid, and methanol were provided by Comeo (Tianjin，
China). Gallic acid and rutin were purchased from Yuanye (Shanghai, China). 
2.2 Field Treatments 

The experiments were carried out in 2018 using 12-year-old, own-rooted Vitis vinifera plants cv 
Cabernet Sauvignon in a commercial vineyard located in Xinjiang province, China. Vines were 
arranged in north-south rows with a between-row and within-row spacing of 2.50 ✕ 1.0 m, 
respectively. The vineyard was managed according to the standard viticultural practices for the 
cultivar and region. 

The grapevines of the same age, size, and growth conditions were selected and assigned to receive 
one of the three treatments: control (water only), 1000 mg/L ABA and 200 mg/L NAA. Spray was 
done directly on the grapes with a hand-held sprayer until run off 7 days before veraison. Grape 
berries were collected at the E-L stage of 35, 36, 37 and 38 [27]. The skin of the grapes was manually 
separated from seeds and pulp and grounded into powder under the protection of liquid nitrogen, and 
stored in a refrigerator at -40 ° C for later use. The remaining grapes were used for small-scale 
vinification. 

2.3 Determination of Berry Weight, Total Soluble Solids (TSS), Titratable Acidity (TA) and PH 

The grape berries were weighed after maturation and average berryweight was recorded. The TSS 
contents were calculated using a digital refractometer (WYT-Ⅲ, Haochuang, China)by crushing the 
berries of eachplot, and the results were expressed in °Brix. The titratable acidity was determined by 
a titrimetric method [28]. 5 ml of fruit juice was titrated with 0.1M NaOH to an end-point at pH 8.3 
using phenolphthalein as an indicator. The pH was measured using a pH metre (PB-10, Sartorius, 
Germany). 
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2.4 Extraction and Determination of Total Phenolics 
To extract total phenolic content, 1g of grape skin or seeds powder was added to 10 mL of 

extraction solution (acetone: water: formic acid = 80:19:1, v/v/v), extracted in an ultrasonic cleaner 
for 30min, then centrifuged at 4 ℃ 12000 r for 20 min. The supernatant was separated and the 
resulting pellet was extracted up to three times using the same volume of the solvent mixture (10 mL) 
each time. The supernatants were then combined and and stored at 4 ℃ until used. Quantification of 
total phenolic content in samples was performed by the Folin–Ciocalteu’s (FC) reagent [29], using 
gallic acid as standard. The results were expressed as milligrams of gallic acid equivalents per gram 
of fresh grape skins (mg of GAE/g). 

2.5 Extraction and Detection of Anthocyanins 
The extraction of anthocyanins follows the following method. For each sample, 1g of grape skin 

powder was added to 10mL of extraction solution (acetone: water: formic acid =70: 29: 1, v/v/v). The 
mixture was kept in dark for 30 min at 35 ℃, and then centrifuged at 4 ℃, 12000 r for 20 min. The 
supernatant was collected and used for the quantification of total anthocyanins by 
aspectrophotometer  (Unico7200, Unico, United States) at 520 nm. The results were expressed as 
milligrams of total anthocyaninsas malvidin-3-glucoside per gram of berry skin (mg.g−1). 

For analysis of individual anthocyanins as described by Mattivi [30], the supernatant was 
evaporated under alow-pressure vacuum (Univapo 100 ECH, Uni Equip, Germany) and the residues 
were dissolved in 10 mL of methanol. 

2.6 Analysis of Anthocyanins by UPLC-MS/MS 
Individual anthocyanins were detected with a UPLC-MS/MS System (Waters Acquity UPLC, 

United States; Bruker Q-TOF-MS, Germany). For the analysis of anthocyanins, the sample (grape 
extract or wine) was filtered through a 0.22 μm PTFE filter prior to injection. And 1  L of sample 
was injected. The column used was a reverse phase (RP) Acquity UPLC BEH C18 (1.7 μm, 2.1mm × 
100mm, Waters), at 45 °C with a flow rate of 0.4 mL/min. And 0.2% formic acid was used as solvent 
A and acetonitrile as solvent B. The elution gradient is as follows: 5% -45% B from time 0 to 20min; 
45% -90% B from 22 to 22 min; 90% B from 22 to 26 min; 90% -5% B from 26 to 26.1 min; 5% B 
from 26.1 to 30min.MS / MS: Electrospray ion source ESI, positive ion mode; capillary voltage 
3.5Kv; sprayer 2.0Bar; dry gas 8.0L/min; temperature 220 ° C. Ion scanning range 100-1000 m/z; 
rolling average spectral ratio 3 * 1.00Hz. Dp-3-O-glu, Pt-3-O-glu, and Mv-3-O-glu are used as 
standards to calculate the content of these three anthocyanins. Others use Mv-3-O-glu as the 
equivalent to calculate its content. 

2.7 Color of Wines 
The color of the wine was determined according to the CIE L * a * b * color space method. Using 

a precision colorimeter (Shenzhen WAVE Optoelectronics Technology Co., Ltd.) to automatically 
compare the color difference between the sample and the tested sample and output three sets of CIE L 
* a * b * data. The three components L *, a *, and b * are digitized the color change of wines [31-35]. 
Calculate the color difference of wine according to the uniform color space formula.  

 ∆E=�(∆L)2+(∆a)2+(∆b)2                                 (1) 
The wine sample was filtered through a 0.45 μm aqueous filter. Remove the protective lens cap 

and turn on the switch. Align the lens with the standard white cavity and standard black cavity for 
calibration. Take 20 ml sample into the multi-function measurement cavity, place the lens directly on 
the sample for measurement, and then press the work key. After hearing a "drop" sound, remove the 
lens and record the reading. 
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2.8 Statistical Analysis 
Data were expressed as mean ± standard deviation. Student’s-test was performed for the 

comparison of the means between control and treated groups. The statistical procedure was carried 
out with SPSS Version 22.0statistical package for Windows (Chicago, IL). The data for the different 
determinations were processed using the variance analysis (ANOVA). Bruker compass Date 
Analysis 4.4 SR1 was used to analyze the liquid quality data.  

3. Results and Discussion 
3.1 Berry and Wine Attributes 

To examined the effect of ABA and NAA on the development of grape berries, the soluble solids, 
total acidity, pH, and berries weight of the grapes were determined. As shown in Table 1, ABA 
treatment significantly increased berry weight, total soluble solids and pH of the berries. And NAA 
treatment decreased the physicochemical indices of berries (Table 1).  

TABLE 1. General parameters of grape and wine for different treatments 

Treatments Total soluble solids 
(°Brix) 

Titratable acidity 
(g/L) pH Berry Weight 

(g) 
Grapes     
control 22.5 ±0.1b 6.68 ±0.04b 3.52±0.03b 124.17±0.93b 

1000 mg/L 
ABA 23 ±0.3a 6.50 ±0.02c 3.64±0.04a 126.02±1.05a 

200 mg/L NAA 22 ±0.1c 6.76 ±0.05a 3.46±0.04b 121.63±0.98c 
Treatments Total sugar (g/L) Titratable acid (g/L) pH Alcohol (% vol.) 

Wines     
control 1.06±0.03ab 4.2 ±0.03ab 3.69±0.03a 14.3 ±0.03b 

1000 mg/L 
ABA 1.07±0.06a 4.17 ±0.03b 3.66±0.03ab 14.5 ±0.03a 

200 mg/L NAA 1.04±0.04b 4.25 ±0.03a 3.64±0.03b 14.3 ±0.03b 
Different letters in the same column indicate significant differences between means (p < 0.05). 

 
This may be because NAA delayed fruit maturation and sugar accumulation. As for the titratable 

acid content in berries, the ABA treatment group decreased by 2.69%, which was significantly lower 
than that of the control group, while the NAA treatment group was significantly higher than control 
by 1.2%. For wine, the alcohol content was significantly increased by ABA treatment and NAA 
decreased the pH of the wine. But there was no significant effect on the total sugar and titratable acid 
content in the wine after both treatments (Table 1).  

3.2 Total Phenolics in Grape Skins 
As Fig. 1 showed, the total phenolic content gradually decreased from the E-L 35 stage to the 

E-L37 stage. Then it started to accumulate and reached the maximum at the E-L 38 stage.  
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Figure 1. Total phenolics content in peel at different stages. 

 
At harvest, the total phenolic content of ABA treatment was significantly higher than the control 

group. And NAA treatment did the opposite. ABA treatment significantly increased the accumulation 
of total phenolic in the grape skins, while NAA had the opposite effect. It shows that ABA has played 
a positive role in accelerating the accumulation of phenolics during the maturation and development 
of the process [36-41], while NAA significantly inhibits the synthesis of phenolics in berries [42] (Fig. 
1). 

3.3 Total Flavonoids in Grape Skins 
The contents of flavonoids in the grape skins showed an increase from E-L 35 stage to the E-L37 

stage and then a decrease from E-L37 to the E-L 38 stage (Fig. 2).  
 

 
Figure 2. Total flavonoids content in peel at different stages. 

 
But the overall trend was still increasing. The flavonoids of the control group accumulated slowly. 

The ABA treatment accumulated rapidly at E-L 36 and reached a peak at the E-L 37 stage. At this 
time, the contents reached 151.58 mg/kg, after which the contents began to decrease slowly, and the 
final contents reached 133.25 mg/kg. The contents of flavonoids in the NAA treatment group was 
always the lowest in the three groups. The highest content was 114.72 mg/kg, and at harvest the 
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contents decreased to 92.19 mg/kg. The final increase rates of the three treatment groups were 
71.17%, 78.14%, and 40.20%. Compared with the control group, ABA treatment significantly 
increased the flavonoid content, while NAA treatment significantly reduced the flavonoid content. 

The application of elicitors and stimulating agents belong to a method of viticulture practice to 
improve the quality of grape berries. In this study, the total phenolic contents and flavonoids in the 
skins of the V. vinifera wine grapes were significantly enhanced by ABA treatment. The result was 
similar to a previous research for a muscadine grape ‘Noble’ [39]. Grape berry ripening and harvest 
can be delayed by the application of NAA during the pre-veraison period of berry development. In 
this case, a considerable delay in harvest was achieved using NAA. 

3.4 Total Anthocyanin Content in Grape Skins 
During the development and maturation of grapes, the content of anthocyanins in berries under 

different treatments showed an increasing trend. With the accumulation of anthocyanins, the berries 
gradually softened and colored. The accumulation of anthocyanins in the berry skins was enhanced 
by ABA treatment and suppressed by NAA from the E-L 35 to E-L 37 stage. But at harvest, the 
content of anthocyanins in the control group reached 4.85 mg / g, while the anthocyanin under ABA 
treatment is 4.71 mg / g. It did not increase the accumulation of total anthocyanins compared with the 
control (Figure 3).  

 

 
Figure 3. Total anthocyanins content in peel at different stages. 

 
ABA can promote the expression of anthocyanin-synthesis-related genes, and can promote berries 

coloring during the ripening and development [37, 41]. But did not increase the content of total 
anthocyanins in berries [43]. The result indicated the ABA-treated berries were overripe at harvest. 
Grapes from ABA treatment significantly underwent a faster color accumulation in grape skin 
compared to control. The accumulation of anthocyanin in grapes treated with NAA was slowest. It 
reached 4.73 mg / g at harvest, which was significantly lower than that of the control (Fig. 3). NAA 
treatment not only delays the ripening and coloring rate of the berries, but also inhibits the 
accumulation of anthocyanins [43-45]. 

3.5 Total Anthocyanin Contents and Anthocyanins Profiles in Wines 
Anthocyanins affect the color and stability of wine directly. The content of anthocyanin in wine 

has an important influence on the sensory evaluation and quality of wine. Total anthocyanin contents 
were significantly lower in both ABA and NAA treatments groups than that of control group (Fig. 4), 
which is in accordance with the content of anthocyanin in grape skins. 
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Figure 4. Total anthocyanins content in wine with different treatments. 

 
Based on the UV-visible spectrum of anthocyanins, MS/MS characteristic ions, fragment ions, 

retention time and literature analysis [46-50], we detected 19 individual anthocyanins in wine 
samples (Figure 5). According to substituent, acylated form, and elution order of the pyran polymer, 
the nineteen individual anthocyanins include seven un-acylated individual anthocyanins, seven 
acetylated individual anthocyanins, four coumarin acylated individual anthocyanins and one coffee 
acylated individual anthocyanins (Table 2).  
TABLE 2. Chromatographic data (peak number and retention time) and MS2 m/z values (molecular 

and fragment ions) content of anthocyanins detected in wine 

Numbe
r Compound MS(m/z

) 
MS/MS(m/z

) 

RT 
(min
) 

Anthocyanin content (mg / L) 

     CK ABA NAA 
1 Dp-3-O-glu 465 303 5.7 19.4385 13.6883 30.4083 
2 Cy-3-O-glu 449 287 6.1 0.2232 0.1797 0.6611 
3 Pt-3-O-glu 479 317 6.7 31.9359 24.3793 48.92 
4 Pn-3-O-glu 463 301 7.2 4.2106 4.4304 7.2565 

5 Mv-3-O-glu 493 331 8.1 312.061
6 

243.434
5 

278.725
7 

6 Dp-3-O-acetylglu 507 303 9 3.933 2.127 6.1923 
7 Cy-3-O-acetylglu 491 287 9.5 0.5152 0.5874 2.3254 
8 Pt-3-O-acetylglu 521 317 9.8 9.5636 6.3577 15.7451 

9 
4-vinylformic acid 

adduct of 
Mv-3-O-acetylglu 

603 339 10.1 1.9028 0.9112 0.7101 

10 Pn-3-O-acetylglu 505 301 10.4 10.3787 14.777 24.1219 

11 Mv-3-O-acetylglu 535 331 10.9 254.36 165.379
3 

209.635
7 

12 Mv-3-O-caffeoylglu 655 331 11.6 1.7813 1.3074 1.677 
13 Pt-3-O-coumaroylglu 625 317 11.9 1.1945 1.2314 2.8781 

14 Pn-3-O-coumaroylgl
u 609 301 12.5 4.0524 5.2243 7.3049 

15 Mv-3-O-coumaroylgl
u 639 331 12.8 40.729 38.1269 36.0559 
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16 4-vinylcatechol 
adduct of Mv-3-O-glu 625 463 13.2 0.5964 0.3299 0.31 

17 4-vinylphenol adduct 
of Mv-3-O-glu 609 447 13.8 6.5977 5.0126 4.3895 

18 4-vinylphenol adduct 
of Mv-3- O-acetylglu 651 447 14.2 2.9645 1.8243 1.9473 

19 
4-vinylphenol adduct 

of Mv- 
3-O-coumaroylglu 

755 447 14.9 0.5754 0.3466 0.1489 

 
The main type of anthocyanins found was anthocyanidin 3-glucosides (Table 2 and Fig. 5), the 

most important one being derived from malvidin followed by other common grape anthocyanidins 
(Delphinidin, Cyanidin, Petunidinand Peonidin).  

 

 
Figure 5. Chromatogram of wine recorded at 520 nm.  

 
In terms of the proportion of species, anthocyanins in wine are mainly composed of 5 basic 

anthocyanin monomers glucosides, acetylated glucosides, and coumalylated glucosides. And the 
content of coffee acylated glucoside is very small or even negligible. 

Among the three treatments, the control accounted for 46.95% of the acylated individual 
anthocyanins. The ABA treatment group was 44.97% and the NAA treatment group was 45.44%. 
Compared with the control group, both ABA and NAA treatment reduced the proportion of acylated 
anthocyanins in wine. As for the ABA and NAA treatment groups, there was no significant difference 
in the proportion of total acylated anthocyanins. But the content of acetylated individual anthocyanins 
in the ABA treatment was lower than that in the NAA treatment group. And the content of 
coumalylated individual anthocyanins in the ABA treatment group was higher than NAA treatment 
group (Table 3). 

TABLE 3. Proportion of anthocyanins in wine with different treatments 
Treatments Un-acylated Acylated 

  Acetylation Acetylation Acetylation 
CK 53.05% 40.11% 0.25% 6.58% 

ABA 55.03% 36.24% 0.25% 8.48% 
NAA 54.56% 38.37% 0.25% 6.83% 

 
For the content ratio, malvidin glucosides, as the main individual anthocyanins in wine, accounted 

for 87.91%, 86.22%, 78.53% of the total anthocyanins in the three treatments. Mv-acoccupied the 
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most content of acylated anthocyanin in wine which is acylated by Mv and anthocyanin acyl 
transferase [51]. It was significantly reduced by NAA treatments. The content of petunidin glucosides 
was 6.04%, 6.04%, 9.94%. Delphinidin glucosides were 3.31%, 2.99% and 5.39%. Peonidin 
glucosides were 2.64%, 4.61% and 5.69% in the three treatments. The content of cyanidin glucosides 
are extremely small or even negligible (Table 2). 

3.6 Wine Color 

The results show that after one year of aging, ∆L is a positive value, which indicates that the color 
of the wine sample has changed to a white tone. And ∆L (NAA) ＞∆L (ABA) ＞∆L (CK), indicated 
that NAA and ABA have greater color changes than the control group.∆a is negative, indicating that 
the wine sample is changing to a green tone.∆a (ABA) ∆a (NAA) ＞∆a (CK), indicated that ABA 
and NAA treatments have more obvious changes to the green tone than the control group. 

 
TABLE 4. CIE L * a * b * measures the color change of wine 

Sample Fresh wine One year later  
 L a b L a b △L △a △b △E 

CK 22.37 4.98 -6.04 23.59 4.21 -5.36 1.22 -0.77 0.68 1.59 
ABA 22.21 4.75 -5.36 23.57 3.64 -4.55 1.36 -1.11 0.81 1.93 
NAA 22.09 4.63 -5.96 23.69 3.6 -4.94 1.6 -1.03 1.02 2.16 

Note: L means black and white; a means red and green; b means yellow and blue 
 
∆b is a positive value indicating that the wine sample is changing to a yellow tone.∆b (NAA) ＞∆b 

(ABA) ＞∆b (CK) indicated that NAA and ABA treatments have a more pronounced transition to 
yellow tones. ∆E is the color difference value. ∆E (NAA) ＞∆E (ABA) ＞∆E (CK), indicated that 
the rate of color oxidation decay of wine samples treated with NAA and ABA was faster than that of 
the control group. Based on Table 4, there is no significant difference in the ratio of acylated 
anthocyanins in NAA and ABA treatment groups. The reason that why wine color oxidized faster 
with NAA treated than ABA treated may be due to the higher content of coumalylated anthocyanins 
in ABA treatment. Studies have shown that coumalylation is more stable than acetylation [52-56]. 

4. Conclusion 
In this study, the effect of exogenous ABA and NAA on phenolic characteristics of V. vinifera 

grape cultivar ‘Cabernet Sauvignon’were systematically studied. The research materials covered the 
skins of grape berries as well as the wines. The phenolic characteristics included the content of 
phenolic compounds (total phenolics, anthocyanins and flavonols) of grape skins and composition of 
wine anthocyanins, which were important to the organoleptic properties and nutritional values of 
grape berries and wines. In conclusion, ABA treatment significantly increased berry weight, total 
soluble solids and pH of the berries. And NAA treatment decreased the physicochemical indices of 
berries. Exogenous ABA applied prior veraison could enhance phenolic contents of grape skins. But 
at harvest, the accumulation of anthocyanins under ABA treatment was lower than control. This 
maybe because the 1000mg/L ABA spray promoted grape maturity. the ABA-treated berries were 
overripe at harvest. Grapes from ABA treatment significantly underwent a faster color accumulation 
in grape skin. And NAA treatment did the opposite. The result had practical significance for the 
application of exogenous ABA in viticulture of wine grapes. We detected 19 individual anthocyanins 
in wine samples of the three treatment. Both ABA and NAA treatment reduced the proportion of 
acylated anthocyanins in wine, which led to the rate of color oxidation decay of wine samples treated 
with NAA and ABA was faster than that of the control group. So maybe the concentration of ABA 
spray is too high in this experiment. Because the phenolic contents and compositions of grapes and 
wines are influenced by many environmental factors in field, such as light, temperature, rainfall and 
biotic stress. Furthermore, more researches are needed into the molecular mechanisms of exogenous 
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ABA and NAA on the phenolic content of grape skins, and also into the effect of the changes in 
anthocyanin composition on color stability of wines. 
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